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LE’ITER TO THE EDITOR 

On the first-order formalism in quantum gravity 

A A Tseytlin 
Department of Theoretical Physics, P N Lebedev Physical Institute, USSR Academy of 
Sciences, Leninsky Pr. 53, Moscow 117924, USSR 

Received 9 November 1981 

Abslrad. .We show that quantum gravity in the first-order form is equivalent to the 
quantised Einstein theory only in the phases where ( e t )  = eo:, det eo # 0. If det eo = 0 one 
must take into account configurations with non-zero torsion. We also discuss the analogy 
with the first-order formulation for gauge theories and the connection-dependent counter- 
terms for the spinor theory. 

Here we shall make several remarks about the quantisation of gravity in the first-order 
form (or the Einstein-Cartan theory, see e.g. Hehl et a1 (1976)) 

2E = -k-2et *R*siet = -k-2RE$*r*gi, 

where e; and utb are the vierbein and the SO4 connection (we use the Euclidean 
formulation). Several arguments support the choice of (1) as a starting point for 
quantisation: (i) the (e, U )  formulation is necessary from the point of view of the gauge 
approach to gravity and supergravity (Hehl et a1 1976, Ne’eman 1978, Ne’eman and 
Regge 1978); (ii) it is the vierbein and not the metric that should be used in the path 
integral in order to avoid the problem of maintaining the correct signature of the metric 
(see e.g. Hawking 1979); (iii) working in the first-order formalism, one is able to write 
down not only the gravitational (1) but also the matter Lagrangian in completely 
polynomial form 

and F are the natural auxiliary fields for the scalar and gauge fields (cf Taylor 1978) 
and ‘i’s are necessary for the correspondence with the Euclidean path integral 
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quantisation. (For example, 

= I dGuu U, a[G,, - (l /gP,,I  exp(-$G:,) 

= Mu, dGA, U, exd&FY[G,u - ( l / g ) ~ , u l - ~ G ~ p ~  

= I U,, U, exp[-iF:, - (i/2g)F""F,,(A)I.) 

It is worth noting that matter Lagrangians arise precisely in the first-order form in the 
'group manifold' approach to the construction of extended supergravities (D'Auria et a1 
1980, Fre 1981). 

This polynomiality seems very important for non-perturbative path integral quan- 
tisation, either in a continuum limit (Taylor 1979, Nod-Moghadam and Taylor 1980) 
or on a lattice (Smoline 1979, Das eta1 1979, Mannion and Taylor 1981). The absence 
of a polynomial 'free' term for e or w (excluding the trivial A term) sharpens the 
problem of phases in the theory. It seem especially natural in the first-order formalism 
to assign the following dimensions to the fields (De Alfaro et af 1980a, b): 

(3) [e:, wEb, A;, +,,I = cm-I ,  [Q, 4a, F& $1 = cm0* 

Now k in (1) is dimensionless while in the 'Einstein phase' 

( e : )  = x - ' a ; ,  x 2  = 16.nG. (4) 

Here we want to point out that the choice (4) (necessary in the second-order formalism 
to provide a meaning for gGU) is not a unique phase in the first-order theory (1). 

Let us first consider the classical field equations for (l), 

( 5 )  

T" A ebeakd = 0, or 9,*.n*:b'= 0, (6) 
where T" = 9 e "  is the torsion two-form. It is important to realise that equations ( 5 )  and 
(6) are equivalent to the Einstein equations only when der e # 0 (then (6) implies T" = 0 
or w = U&)). In fact, we found the following solutions of ( 5 )  and (6) with der e = 0 and 
non-zero rorsion for the SO4 and SOs (static)-symmetrical cases (here we assume that 
the A term is included in ( 5 ) ) :  

b Rab A ec&abcd = 0, "be = 0, 

2 SO4: e" = a dn ", n" = x " / p ,  p = x a x a ,  

T" = C X Q ~ E  Obcdnb dn, h dnd # 0, 
SO3: eo = f dt, e' = a  dn', n '  = x ' / r ,  r2 = X I X I ,  

ut' = &Iik+nk dt, 

Q = -iAaf,  

Rab # 0. 

U'' = cpn' dt, 
(8) 

a, f = constant, + ( r )  = arbitrary, 1 

Ta #O, Rob # 0. 
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One can mention several properties of these solutions: (a) torsion and curvature swiftly 
decrease with p (or r )  + 00 (cf the proposals of torsion instantons or monopoles by 
Hanson and Regge (1978)); note also that (7) 

A = Q1/2p2, 
can be compared with the one-instanton 

B = -Q2/2P2) 

(e: = (6 /A)1 ’2 [a / (p2+a2) lS~ ,  A = 2 / ( p 2 + a 2 ) ,  B=O) 

andmeron (e: - (l/p)S:) solutions (see e.g. De Alfaro et a1 1980a); (b) (7) and (8) have 
a universal scale dependence on x w y  naturally corresponding to the choice (3); (c} the 
metrics in (7) and (8) measure distances only in the directions orthogonal to n” or n’. 
Hence one can speak about space-times with det e = 0 as having ‘metrical dimension’ 
d < 4 (and so (7), (8) or their multidimensional generalisations may have some relation 
to a mechanism of dimensional reduction and also to the effect of quantum fluctuations 
of the space-time dimension (Banks 1980)). Observe also that the behaviour of matter 
on the background of (7) or (8) also corresponds to the ‘dimensional reduction’ (e.g. the 
corresponding solution for Q in (2) is p or r independent). 

The main question is why solutions with det e = 0 are to be considered as physical at 
all. We think that they must be included in the path integral (Hawking (1979) pointed 
out that changes of the space-time topology occur through these degenerate metria). 
Thus one can conjecture the possibility of the ‘non-Einsteinian’ phases (e) = eo, 
det eo = 0 in the theory (for the discussion of the phases different from (4) see also 
Taylor (1979), Nouri-Moghadam and Taylor (1980)’ De Alfaro et al(1980a’ b)). The 
simplest solution of (5)’ (6)  with det e = 0 is e: = 0, wEb = arbitrary. The corresponding 
phase (e) = 0 is essentially ‘non-classical’: in some sense the classical metrical space- 
time does not exist in it (cf Taylor 1979). Comparing(e:) = x - ’ S l  and (e l )  = 0 with the 
(p4 theory phases (Q) = a and ( c p )  = 0, one can speculate that the (e) = 0 phase is restored 
at high temperatures and curvatures (initial singularity or the final state of collapse). 

Now let us consider the formal Euclidean path integral for (1)’ 

.=I de dw exp(k-’e*R*e+et+wS), (9) 

where t and S are the sources (energy-momentum and spin) and we imply some 
boundary conditions for e and w (or the choice of the vacuum). First we shall discuss the 
integration over w, assuming (0) = 0. Adding the square of torsion to (1)’ one has 

9 k  = ( J i / k 2 ) [ - R ( w )  +;a(T:,)2] 

a+2 
3 

+ - (J -Go)’ + 6(2a + l)(d - do)2 

where 
Ad ” b 

@ab&: = &bc + %c[&a] + EabcdO Y 6 [ a b c l =  0, w a  = 0 ab. 

So the action (1) (a = 0) is non-positive not only in the ‘e sector’ (Hawking 1979) but 
also in the ‘w sector’ (cf Deser and Nicolai 1981). Thus the integral over w in (9) should 
be defined either by 6 + i 6  or by going to (10) with a a 1 (this does not disturb the 
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equivalence with the Einstein theory when det e # 0 and S = 0 but makes the action 
non-polynomial). The result of w integration (trivial from (10)) can also be written (for 
S = 0) in the form (see (1)) 

where KF; =f&*n*E'S 0 and so the analytic continuation is again assumed; a = [ab] 
andf;, here are the SO4 structure constants. The first term in (1 1) is the Einstein action 
(with the boundary term), and so e: contribute in it only through T $  and its 
non-polynomiality stems from K-'. It should be stressed that (11) is valid only when 
det K # 0 or det e # 0, and therefore (9) is equivalent to the Einstein theory only up to 
the contribution of configurations with det e = 0. Hence the consequence of (9) is (1 1) 
plus the result of w integration for the case of det e = 0. 

Next we shall remark on the connection of (l), (9), (1 1) with the first-order (and field 
strength) formulation of the SO4 gauge theory in the flat space-time (see e.g. Halpern 
1979, Seo and Okawa 1980) (cf (2)) 

3 = $(F;,,'+ (i/2g)FY9$(A). (12)  

Assuming that (i) one can neglect the F2 term in (12) and (ii) FE" is the composite field in 
terms of some new one e:, FZL = 2i*n*Z& we conclude that (12) coincides with (1) with 
g = k . Moreover, integrating over A, in the path integral for (12), we obtain 2 

(.%: = f ;?Ey, P;" = a,Az - a,& + f ;,&A ;) 

The comparison of (11) and (13) shows that the Einstein Lagrangian is exactly the 
'aFF-'aF' part of the SO, gauge theory Lagrangian in the F formulation under the 
substitution F+ 2i*7r*. 

A natural intention now is to integrate over e:  in (9) in order to obtain the 'dual' to 
the Einstein formulation of the theory thus analogous to the ordinary A ,  (or w )  
formulation of the gauge theory. It is important to realise that the gaussian integral over 
e (suitably defined in view of *R* 2 0) is exactly calculable, 

dw " *  
*R*)l/2 exp(-sk t R*- ' t+wS) ,  

= 5 (det 
(14) 

only in the ( e )  = 0 phase. Thus the theory (14) (possessing rather unusual properties 
like the absence of propagation of interaction of ' t 's  in view of the algebraic nature of 
*R*i and the lack of the free w term apart from Tr log *R* - S4(0)) is not equivalent to 

+ To give the idea of the explicit form of *R*-' we present here the expression for 3LT-I in (13) in the case of 
suz: * 

XI'" (L" = [ E ' " F ~ ~ ] - *  = (16/det G)(-@"N,, .  +QG'"G'"F~,E,,,,,k), 

G" = FL$Lu, Nu" = $E,,*;L*F:;:u 

(this general result seems to be absent in the literature, cf Halpern (19791, Seo and Okawa 119801 and 
references therein). 
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the Einstein theory in the usually assumed phase (4) (however, it is equivalent to (11) 
with the additional term mentioned above, but again only if (e) = 0 is assumed in (1 1)). 
In the phases with ( e )  # 0 the e integral in (9) cannot be exactly calculated (one must 
take into account the zero modes of *R* or the solutions of (5), (6)). An obvious 
semiclassical approximation (in both e = eo + h and w = 6 + w) gives (for det eo # 0) the 
well known semiclassical result in the Einstein theory (independently of the order of 
the h and w integrations). If, however, det eo = 0 one must take into account the 
configurations with non-zero torsion like (7), (8). 

It should be noted that in the above formal discussion we have ignored (e.g. 
assuming a cut-off) possible counter-terms in (9) which may preclude an exact integra- 
tion over e and w. Observe also that the problem of gauge fixing does not arise in the 
separate e and w integrations in (9) but only in the whole integral. 

When matter is present we shall consider e and w on an equal footing, calculating 
first the path integrals over the matter fields. As an example, let us discuss the 
divergences of log det $ ( U )  for the spin-; theory in (2). This calculation is very simple 
(cf the straightforward but unnatural and unnecessarily complicated approaches of 
Goldthorpe (1980), Kimura (1981) and Nieh and Yau (1981)) if one observes that: (i) w 
contributes to @(I only through the composite field B,, 

(ii) & = ySB,, can be formally considered as an internal U1 gauge field in view of 
[U&, y51= o or [@OF, &,I = 0, wo,, = Z U ~ ~ O , , .  Then, introducing D,, = a,, +Uo,, +&, we 
obtain, using a well known algorithm (see e.g. Schwarz 1979), the corresponding 
counter-terms in the form 

1 ab 

U1l2 = -(n -4)-’b4, 

(41r)~b4= -$Wi, -&jR*R*-&(R~,,-$R2)-&$B22R, (16) 

where R...=R...(e), W,,v=a,,Bv-a,,B,. Thus the theory (1) with spinors is non- 
renormalisable not only in the ‘e sector’ but also in the ‘w sector’ (one needs the bare 
W:, term leading to the !propagating torsion’). Observe also that the interaction of (I 
and w through $ ( U )  is not the interaction of fermions with the internal SO4 gauge field 
because [yo, cCd] # 0. This is the cause of the appearance of W;, instead of the 
‘ordinary’ [R$(w)]’ term in (16). Therefore, various R2(w) additions to (1) (see e.g. 
Neville 1978, Sezgin and van Nieuwenhuizen 1980, Christensen 1980) seem to be 
unnatural from the point of view of the interaction of w with the basic spin-$ matter 
field. However, the generalisation of (16) for the spin-: field will be more complicated 
because all irreducible parts of the connection contribute to the gravitino Lagrangian 
and thus in the (I,,+ interaction (note that the formal integration over (I,, before the 
integration over w was recently considered by Deser and Nicolai (1981)). 

In conclusion, let us point out that if it is possible to construct finite supergravity 
theories strictly in the first-order form (with w being independent off-shell) then not 
only e- but also w -dependent divergences will mutually cancel. As a result, one will be 
able to justify the formal integration over w and (or) the use of the polynomiality of the 
bare action in the study of phases of the theory and in a non-perturbative calculation of 
the integral over e:. 

The author is grateful to Professor E S Fradkin for useful discussions. 
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